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The kinetics of heterogeneous reactions, involving one reactant in the solid phase, 
usually follow the law ~ = Koo e x p ( - - E / k T ) f ( l  - -  ~), where ~ is the degree of conversion 
of the solid, and Koo and E are the kinetic constants. A critical examination is given of 
the various methods which are currently used to analyse dynamic experimental data. 
The limitations of these methods and their insensitivity to the form of f(1 -- ~) are 
pointed out. An alternative approach free from these limitations is suggested. In this, 
f(1 -- c~) is determined from isothermal experiments, and then the dynamic data are 
accurately analyzed to obtain the values of the kinetic constants. A case study is given 
to elucidate the applicability of the approach. 

There are many reactions of  interest in which one of the reactants is in the solid 
phase. These reactions can be classified variously as decomposition, dehydration, 
calcination, dehydroxylation, reduction, polymeric inversion and degradation, 
oxidation etc., and they occur in a wide range of substances including ceramics, 
explosives and biological materials. The dynamic method of studying their kinetics 
involves measuring the reaction rates under conditions of  a continuous temperature 
change. 

Originally proposed by Skramovsky [1 ], the dynamic method is becoming in- 
creasingly popular, especially with the development of  differential thermoanalytical 
techniques like DSC and DTA. Since the initial temperature can be chosen so that 
the reaction rate is relatively insignificant to begin with, it does not suffer f rom 
zero-time i n a c c u r a c y - a  problem which exists in isothermal experiments where the 
temperature is raised rapidly and then held constant at a particular value. A further 
advantage is that, provided the dynamic data have been unambiguously and cor- 
rectly analyzed, any changes in the kinetic constants will not be over-looked even 
within small temperature intervals. In contrast, the isothermal method only pro- 
vides values averaged over discrete points in temperature. Also, when the method of 
analysis used is such that the kinetic constants are calculated f rom each dynamic 
curve then very few samples are required; only a milligram or so of  the material is 
needed for its thermal characterization. I f  many runs are indeed carried out, differ- 
ences between individual samples can be determined. The last two advantages are 
particularly useful in single crystal work. 

On the other hand, intrinsic differences should be carefully distinguished f rom 
the effects of experimental conditions. In the first case literature data have shown 
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that experimental parameters such as sample mass [53] and shape, particle size in 
the case of powder samples, and ambient atmosphere (or vacuum) can affect signif- 
icantly the calculated values of kinetic constants (see [2]). i f  this happens, then 
whenever possible the empirical results should be extrapolated to refer to a 'stan- 
dard' set of experimental conditions. Secondly, the heating rate very often affects 
the shape of the dynamic curve obtained, but discussion will be deferred to the next 
section. Lastly, the very fact that temperature is now a variable, in addition to time, 
complicates the analysis of data. If due care is not taken, either inaccurate or totally 
misleading values are obtained. In fact, a survey of the literature reveals several 
instances of high-quality experimental data being mis-interpreted by methods 
beyond their ranges of validity. In this paper, we first describe the various methods 
and point out their limitations. We then defend the approach in which use is made 
of both isothermal and dynamic experiments. The analysis of isothermal data yields 
f ( 1 -  ~) (as defined below) unambiguously and, knowing f ( 1 -  ~), one can calculate 
individual values of the kinetic constants from each set of dynamic data. We may 
mention that, historically, isothermal experiments were the only ones employed 
in the pioneering age in the twenties and thirties, when solid-state reactions began 
to be studied from the modern point of view, as distinct from that of Langmuir, 
Nernst and Tammann. 

Kinetic equation 

As discussed elsewhere [3] the kinetics of a reaction proceeding isothermally can 
usually be described by the empirical relation: 

(~)isothermal = K , f (1  - e) exp ( - E / k T ) .  (1) 

Here c~ is the fraction of the solid reacted, k Boltzmann's constant, T the tempera- 
ture, and f ( 1 -  ~) and the constants Koo and E are characteristic to the reaction. 
The function f(1 - c 0 may change in different ranges of a but is, for a given c~, inde- 
pendent of T, at least within a range of T. K~o and E should be the same for the 
same f(1 - c 0. If  the rate-controlling step of the reaction occurs on the reactant-free 
surface or on the reactant-product (solid) interface, then Ko~ will contain the sur- 
face-to-volume ratio. In other words, the reacting system should really be normal- 
ized per unit area rather than per unit size, and Ko~ be given in units such as mole- 
cules s - 1 m-  2. 

Some authors have questioned the general validity of (1) on various grounds 
[4-7] .  However, in the literature (1) is almost always successfully fitted to experi- 
mental data. Indeed, this empirical relation can be given mechanismic jutification 
(see [3]). 

In dynamic experiments, also, it is commonly agreed that (1) may be adapted to 
describe the reaction rate: 

d~ = K , f ( I  - c 0 exp [ - E / k T ( t ) ]  (2) 
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T(t)  is controllable by the experimenter. Some temperature programs offer the 
mathematical advantage that exp [-E/kT]/;I"  can be integrated analytically (see 
later discussion on integral methods of data analysis). Examples are the hyperbolic 
program where 1/T = A - Bt,  i.e. T = B T  2 [8, 9]; a parabolic program in which 
A T  2 + B T  - C = t, i.e. 1/2P = 2 A T  + B, with B = AE/Koo by iteration [t0]; and 
an exponential program so that T = exp ( - B / T )  with B ~- E /k  [10]. For the sake 
of experimental convenience, however, the arrangement is usually that T = ~b 
(A, C and q5 represent constants in a particular run of experiment). 

However, it has been taken by some authors who object to (2), that 

da = -~- dt + ~ d T +  d e  (3) 

---~ (~) i so thermal"  The argument is then that (2) is seen to be inade- where ~ r,r 

quate even in the case of dq~ = 0, since the second term on the R.H.S. of (3) is non- 
zero but left out in (2): see e.g. [11, 12]. It has further been proposed [13], by a 
derivation starting from (3), that (2) is correct only if it includes the extra factor 

[1 + (1 - T J T ) E / k T ]  

in which T O - T(0). But we hold that (3) is unsound. Given t, T and r ~ is not 
uniquely determined and therefore not a function of these system variables; #dc~ > 
> 0, as c~ cannot decrease even for negative dT  and dq~! Nevertheless, the inexact 
differential dc~ can be integrated, if the dynamic process can be treated as the limit- 
ing case of a series of time intervals, during which the reaction proceeds isother- 
mally according to (1) but at the end of each of which Tis altered, in a time so short 
that during it the sample is unchanged. Along this path P the result is easily ob- 
tained [14]: 

T 

f(1 - c~ - Kdt  = exp (- E / k T ) d T  (4) 

0 P To 

where K = Koo e x p ( - E / k T ) .  We must emphasize that (4) is not logically self- 
evident, as is sometimes implied [14] or argued by mathematical operations based 
on the presumption that e = e(T, t) [15]. Rather, it comes from the assumption 
that the reaction under study involves no slow processes, so that ~ depends only 
on the present values of ~ and T (~ is a function of state), but not on the history of 
the reacting system (c.f. [161). Only by this assumption (absence of memory effects) 
can the dynamic process be treated as P. (Experimentally, a temperature program 
with temperature jumps, which approximates P, has been realized on a thermo- 
balance interactively controlled by computer [17].) Equations (2) and (4) are of 
course equivalent. Their validity has also been shown by 'rational' thermodynamic 
arguments, in which the functional relation ~ = g (t , /s is regarded as the 'con- 
stitutive equation' characterizing the reaction system [18]. In a new direction, 
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the possibility has been suggested [64] that solid-state reactions may be studied 
by far from equilibrium thermodinamics. 

On the other hand, experience shows that apparently (4) is not always followed 
exactly. Consider a reaction being investigated by a series of experiments conducted 
at different heating rates ~b but with the same initial temperature T 0. In (4) we see 
that the R.H.S., for a given upper temperature limit T, is directly proportional to 
1/~. Plots of the L.H.S. vs. T should therefore all have the same shape. It may hap- 
pen, however, that increasing departure from isomorphism is seen when experimen- 
tal data obtained at higher ~b are so analyzed. The most probable explanation is that 
the temperature change is too fast, causing the temperature distribution in the 
sample to become significantly non-uniform. In fact, thermal equilibrium is an 
underlying assumption when (4) is derived above; without it ~ will depend on the 
thermal history of the reacting system. 

Other factors may also be at work. The reaction rate may be sensitive to the 
structure of the reactant, and a higher q~ can enhance the defect density or change 
the activation energy of reaction at a defect site [19J. In branched-chain reactions, 
the speed of the progressive accumulation of active centres may vary with the rate 
of change in temperature [20]. If the reaction is a surface process, the distribution 
of reaction 'centres' among corners, edges or faces of the sample may change with 

[21]. It may also be that the chemical system under study has multiple reactions 
proceeding concurrently in it, and they have different E [22]. All these variations 
in E may be accompanied by changes of Ko~ in the same direction. Because of this 
coupling, a linear relation between E and log K| is sometimes observed. Called the 
'compensation effect', this phenomena does not necessarily mean, as was suggested 
[4], that the Arrhenius expression in the R.H.S. of (4) is invalid. In all these cases, 
by varying ~b the experimenter can, in fact, gain additional insights into the mecha- 
nism of the reaction, or distinguish between the competitive reactions in the react- 
ing systems (a situation usually, though not always, indicated by the presence of 
multiple peaks in the ~ curves). This is possible if the method of data analysis 
employed is such that Koo and E are determined from a single ~ or c~ curve, rather 
than from data at a number of heating rates. The method we suggest will be of this 
type. 

It may also happen that in (2) K~ oc T, so that it cannot be taken outside the 
integral sign in (4). Indeed, modifications have been suggested of some methods of 
data analysis (those that assume a reaction order for the reaction) to take this extra 
temperature dependence into consideration [23]. However, even when theoretically 
required, the correction may for practical purposes be ignored, unless E is small or 
temperatures used are very high (d In K / d T  = [E + kT]/kTZ). Likewise, any slight 
temperature dependence of E can usually be neglected. Furthermore, irrespective 
of this or the above complications the form off(1 -c0  in (2) and (4) is not affected. 
It should be the same as that in (1), on the basis that the dynamic process can be 
treated as the limiting case of a series of isothermal intervals, as already mentioned 
above. 
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Data analysis 

Experimentally, ~ or c~ is obtained by DSC, DTA, TG, DTG, quantitative 1R 
spectroscopy or X-ray diffraction, dilatometry, or measurements of chemi-lumines- 
cence, ultrasonic attenuation, dielectric constant, viscoelasticity, thermal or electri- 
cal conductivities, or optical reflectivity when changes in these characteristics can 
be correlated with c~. The oldest technique is thermomanometry, in which the pres- 
sure of an evolved gas is measured at constant volume, but its use has so far been 
more popular in isothermal experiments. Many methods of analyzing ~ or e data 
have been proposed to calculate the kinetic constants E and K~ (for a critical 
review of the earlier work see [24]) and sometimes also f ( 1 - c  0. Often they were 
originally formulated with reference to one particular instrumentation, but they 
may be made generally applicable to all techniques after quantities measured on 
DSC, DTA, TG instruments etc. are all interpreted in terms of ~ and ~. On the 
other hand, their validity does depend on the particular reaction whose data are 
being analyzed. Their limitations in this respect form the subject of our discussion 
below. They will be examined in three groups: peak-temperature, integral and 
derivative methods, in this order. Sophisticated instrumentation systems are com- 
ing into use, that incorporate computers to establish baselines or other null settings, 
to carry out automatic data acquisition, and to let the experimenter interactively 
analyse the data (e.g. [25]). Such advances do not, however, remove the danger of 
uncritical choices of the method of data reduction. 

Critical examination of current methods 

Peak-temperature method 
Kissinger [26] considers reactions of the type f(1 - ~) = (1 - ~)n. Differentiating 

(2) with respect to t, and setting the resulting expression to zero, he obtains 

~m(E/k)((9/r 2) = exp (-E/kTm) n(1 - -  O~m)n-l~ m (5) 

in which m signifies 'peak' quantities, at the paint of maximum ~ where ~ = 0. 
He next assumes that n(1 _~. , ) . -1 ..~ 1 ; therefore 

q~Tm 2 oc exp (-E/kZm) (6) 

regardless of n, which itself may be calculated from the shape of the a (t) curve. 
E and k, on the other hand, are obtained by performing a series of experiments at 
different qS. An aspect, which we regard as an inefficiency, of Kissinger's method is 
that only one point on the curve is used although, in the case where multiple peaks 
occur signifying that different f(1 - ~) and E govern different sections of the curve, 
the method should still be applicable to each peak. 

There is, however, an important limitation. The a priori condition that f(1 - ~) = 
--- ( 1 -  ~)" is actually valid only in very special circumstances, namely when the 
rate-limiting step of the reaction is the inward movement at a constant speed of 
the reactant-product interface, where n is 0, �89 or 2/3 for one-, two-, or three- 
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dimensional movement, respectively, or when the reaction is unimolecular so that 
n = 1. Even among these special cases, the other approximation that Kissinger 
uses is still conditional, since n(1 - ~m) n- ~ =- 1 only for n = 1. When n is �89 or 2/3, 
this expression varies with %, approximately as Ae,~ n(1-n)/(1--C~m) 2-n >~ 0.2 
A~m, where A~m is the variation in c~ m itself. In the Appendix we show that c~,~ 
changes with r in the general case. Hence, when an apparent reaction order exists 
and is �89 or 2/3, Kissinger's method can lead to a systematic deviation in (6) and thus 
generate a significant but hidden error in the calculated E and K| 

If no apparent reaction order exists, then it definitely should not be used, other- 
wise an approximately linear plot from (6) results in totally misleading values of 
the kinetic constants. An example is in the decomposition of benzenediazonium 
chloride: it derives from DTA data a value of E that is 40 ~ lower than the nearly 
identical values, obtained by applying other methods of analysis to the data from 
DTA as well as other techniques [27]. Other examples are in the study of lithium 
aluminium hydride, where the Kissinger values are half of the isothermal result 
[28], in RDX where it is again 40 ~ lower than all the values calculated by other 
methods [29], and in urea nitrate, where it is 30 ~o lower [30]. 

lntegral methods 

The L.H.S. of (4) is a function of ~ only and will be denoted by F(~); the R.H.S. 
v 

can for practical purposes be equated with .~ K/(o dT, since in experiments T o will 
0 

be such that reaction velocity is negligible below it, i.e. T o ~ Elk. In view of these 
considerations, many authors have proposed different methods of analysing ~(T) 
data. r 

The temperature integral j" exp ( - E / k T ) d T  has no analytical solution. (In the 
0 

unusual case of a hyperbolic, parabolic or exponential temperature program, 
on the other hand, exp ( - E / k T ) / T  is integrable.)The numerical values of the inte- 
gral have been compiled but, being a function of both E and T, are not directly 
useful unless an iterative solution of (4) by trial-and-error is resorted to. Such an 
approach has been advocated by Zsakd [31 ] who considers in particular the cases 

c~ 

f dc~ of f (1  - ~) = (1 - c~) '~ with n = 0, 1/3, 1/2, 2/3, 1 or 2, when g(c0-  log. f ( ~ _  e) 

0 

has simple analytical expressions, and by Satava and Skvfira, [32] who generalize 
the method slightly by tabulating the values of g(c0, 0 < ~ < 1, for some other 
forms off(1 - ~). 

For more efficient approaches, approximations to the integral are necessary. 
Thus, taking the first two terms in an asymptotic (u =-E/kT--~ o~) series of 

u 

dr 
exp ( -  z) ~ -  Coats and Redfern obtain the linearized relation [33]: 

co 

In (F(cOr- 9.) = A - E l k ( r -  1) (7) 
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where A = in(KookiEr)(1 - 2kT/E) is 'sensibly constant' if the range of temperature 
AT is small. They further assume that f ( 1 - c  0 = (1 _e)n, and so F(e) can be cal- 
culated at each (e,T). Plotting (7) for several values of ~ thus gives E and K~, 
making use of only one set of data corresponding to a single ~b. 

Several cautionary notes should again be made here. The assumption for f(1 - ~) 
has already been discussed. Similar to the case of Kissinger's method, results ob- 
tained may be wrong and misleading if this functional form is not independently 
determined beforehand. Thus, in a study on the dehydroxylation of kaolinite [34], 
straight lines over different ranges of (T-2) are given by (7) for a whole series of 
values of n, namely, 0, 0.5, 0.667, a and 2. In particular, plots using n = 1 and 
n = 2 are almost equally 'good'. 

Secondly, the accuracy of the asymptotic approximation is rather low. By com- 
paring its values with tabulated values of the integral [31, 35, 36], we find its rela- 
tive errors to be AI/I-- 20 ~ at u = 5, 5~  at u = 10, and 1.5 ~ at u = 20. Thus, for 
example, if E is 1 eV, then for an accuracy of 98 ~ the highest temperature reached 
in the experimental run should not be more than 600 K, a very low figure for most 
materials though it is higher for larger E. Additionally, expanding A into a power 
series shows that AA/A ~- 2k A TIE, so that at say 2 ~inaccuracy the range of tempera- 
ture, AT, from which (e, T) points are selected should be less than 100K (for E = 
1 eV). The total possible deviations in the calculated E and K~ are, to first approxi- 
mation, the sum of the AI/Iand AA/A. It certainly is unsatisfactory if they are large 
and yet nowhere mentioned in the calculation. 

Other approximations to the temperature integral have been suggested by van 
Krevelen et al. [37] and by Horowitz and Metzger [381, who made use of certain 
asymptotic expansions in the vicinity of Tin, the temperature at peak reaction rate. 
Both have been shown [39] to be even less accurate than the Coats and Redfern 
approach, and so will be left out in our discussion. 

Amongst the integral methods, the best is probably the one due to Ozawa, which 
requires data at different q5 but, in it f ( 1 -  ~)remains completely general. The ap- 
proximation to the temperature integral is: - 

so that from (4) 

T 

f exp(-E/kT)dT~- ~ 10 (-2"32-~ 

0 

log qS~ + 0.457(E/k)/T~ = log q52 + 0.457(Elk)T2 

(8) 

(9) 

where T1 and T2 are taken at an arbitrary but identical value of e in the two curves 
corresponding to heating rates q51 and q52. Plotting log q5 vs. 1IT for selected values 
of c~ should therefore produce straight lines, the slopes of which give E [40]. 

Three comments are appropriate here. By comparing (8) with tabulated numer- 
ical values, we see that it is 7 ~  out at u = 10 or T = 1170K, and 3 ~o and less only 
for T < 720K (if E = 1 eV). These errors should be examined before Ozawa's 
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method is applied. Secondly, the method has been modified [41] to read, in place 
of(9), 

A In r 1 = 0.457 E/k (10) 

in which A In r = ha r - In r etc., and m denotes, as before, peak quantities. 
This relation may be compared with (6) but in general it does not hold since, as 
shown in the Appendix, a m varies with r Lastly, like Kissinger's method, E cannot 
be determined from data at a single r and in some cases this maybe adisadvantage, 
as discussed before. 

Derivative methods 

The derivative methods offer an advantage over those described above in invok- 
ing no mathematical approximations. Unfortunately, they use ~ data which, with 
present instrumentation, tend to be of lower quality whether they are obtained by 
numerically differentiating the c~ data or are direct experimental read-outs. 

The most straightforward, but as it stands relatively inefficient, of  the derivative 
methods is to write (2) as: - 

In (d/f(1 - ~)) = in Koo - E/kT (11) 

and to substitute different off(1 - ~) until a linear plot appears [42]. Later, we shall 
argue, however, that even this labor omnia vincit approach like all dynamic meth- 
ods in general, cannot guarantee correct values of E and Koo (nor an unambig- 
uous form of f ( 1 -  a) in this specific case), although the labour it involves may be 
undertaken by the computer. 

The earliest derivative method is probably that of Borchardt and Daniels, origi- 
nally formulated for homogeneous reactions in the liquid phase [43 ] but later extend- 
ed to solid-state reactions [44] for which it is now frequently used. The method 
puts f ( 1 -  c~) = ( 1 -  ~)n into (11), with n given a guessed value, and if a linear plot 
results then E and Koo are obtained from it. Based on this method, Hauser and 
Field [45] have developed a computer procedure, in which plots are generated for 
a series of values of n incremented at discrete steps, and the 'best' one is then se- 
lected to yield E, Ko~, and n. An attraction of this method is that n can be readily 
selected by eye. Alternatively, since in this case 

A In ~/Aln(1-a)  = - (E/k[AT-1/A I n ( I - a ) ] )  + n (12) 

a plot of the L.H.S. vs. the quantity in the square brackets at once gives E from the 
slope and n as the y-intercept [47]. If constant A In ~, A In (1 - ~), or A T -  1 is selected, 
Eq. (12) can be further simplified [61]. We have emphasized previously the falli- 
bility in presuming such a convenient form o f f ( 1 -  ~); Ozawa [47] has commented 
on the possibility that this procedure, and the integral method of Coats and Red- 
fern, may give false values of E and Koo. In addition, since (12) involves the ratios 
of differences, the quality of data called for is even higher than that demanded 
alone by the use of ~; experimental data so plotted more often than not show very 
large scatter. The Rogers and Morris method [48] plots Alna vs. T-1, and can be 
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seen to be the special case of n = 0 in (12). An example of the general danger that 
very linear plots may sometimes appear even if the applied method is not valid is 
given by Patel and Chaudhri. The Rogers and Morris method was used to analyze 
DSC data on lead azide, and a straight line results although the calculated E turns 
out to be 180~ larger than the Ozawa value [49]. Conversely, the coincidence of 
values calculated by various methods need not prove that these methods are all 
applicable to the case in hand. A counter-example is provided by a DSC study on 
RDX [29], where the Rogers and Morris value agrees well with other values but 
the complex decomposition is beyond doubt far from the n = 0 type. 

On the other hand, D~ivid and Zelenyfinszki [50] plot ln/l-~-t (1 -~ )1 / (1 -~ ) /  
L ~ - - "  ] 3 

against (T- l ) ;  this amounts to assuming a 'reaction order' n = 1. It serves as yet 
another example of the futility of linear plots, for their method gives such plots for 
the decomposition of 'a wide range of materials' including calcium oxalate and 
polyethylene which, most likely, are not of first or any other 'order'. 

Some of the integral and derivative methods described in the foregoing have been 
compared by testing their accuracies on synthesised DTA data (exact as well as 
with artificial random error) for one E value and temperature range, the reaction 
considered being of the type with a reaction order [51]. Among the methods not 
included there is that due to Friedmann [52]. It probably is the most general among 
the derivative methods. Like Ozawa's procedure, it makes no assumption about 
f ( l  - a), although it requires ~ data which, furthermore, have to be at a number of ~b. 
Once again, from (2) with da/dT  = c~T: 

ln(aT~) = l n ( K ~ f ( 1 - e ) )  - E / k T .  (13) 

Since K ~ f ( 1  - cO is identical for the same value of c~, taking c~ T and the correspond- 
ing Tfrom several ~b one can determine E. 

It is our contention that even Friedmann's method has one basic limitation which, 
more significantly, is shared by all dynamic methods described above. The point 
in question is that all of them have to presume the constancy off(1 - e )  as the tem- 
perature is changed. However, since mechanisms of solid-state reactions are gener- 
ally complicated, there is no general justification for this presumption, though it 
may be true for particular reactions within specific temperature ranges. An illustra- 
tion is the case where parallel reaction paths exist, each with values of K~ and E 
such that a quantitative change of Twill lead to a qualitative change in the dominat- 
ing path. Another case is where the identification of the rate-limiting step depends 
on T. Methods have been proposed which, by the use of computers, try different 
forms o f f ( 1 - c 0  in analyzing the dynamic data [53-  55]. However, the search is 
limited to functional forms which are already known. 

More importantly, from our own experience with azides we have strong doubts 
as to the exactness in determining f(1 - c  0 or even its constancy from dynamic data. 
Likewise, in a study on the dehydration of manganese formate [54] for instance, 
no unique form off(1 - e) and correspondingly no unique values o rE  are identified 
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even over  appropr ia te ly  restricted ranges of  e, the criterion used being min imum 
s tandard  deviat ion in the Arrhenius plot. Fur ther  examples are the thermal  dehy- 
droxylat ions of  kaolinite [34] and o f  magnes ium hydroxide [56]. We suggest that,  
in dynamic  experiments  since data are collected under  variable tempera ture  condi- 
tions, the change due to f ( 1  --c~) is inherently masked  by  tha t  due to K(T) .This  pitfall 
is i l lustrated in the Figures. Figure l a  shows the graphs of  c~(T) and its derivative 
which are generated artifically according to the theoretical  equat ion a T = Ko~ 

103/T: K -T 

2 1.70 1.80 1,90 2.00 2.10 2.20 
- ~ ~LL~L~tl~ilLIhlLL.[~l~ll.~k[I. iLtll.ll~L~LL~l~l~Ll 

- 6  -- 4 

3 ' 
b) 

-10 

0.8 

E 
= 0.6 &. 

,~ 0.4 
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o ,I ......... '. 
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Temperature, K 

Fig. la. Artificial data ~ = Kt, and corresponding o r = d~/dT data, plotted against T which 
rises linearly with t 

Fig. lb. Arrhenius plots of: (1) ~r/3(l -- c0 ~13, (2) c~r/2(1 -- c01/2, (3) c~ r, and (4) c~r/3cd/3 
for the data shown in Fig. la 

exp ( - E / k T )  th roughou t  f r o m  a = 0 to a = 1. The values chosen for  Ko~ and E are 
lO s and leVrespectively. Let  us now examine how the da ta  generated according to 
this relation, which is o f  the type c~ - Kt, will be fitted by differentkinetic equations,  
one of  them being the correct  one. In  Fig. lb  we plot  against  103/T the na tura l  
logari thms of  the following expressions: - 

(1) c~T/3(1-- a) 2~a, i.e. assuming 1 - - (1- -c@/3 = Kt: reaction control led by 
three-dimensional  contract ion of  phase  boundary ;  

(2) c~r/2(1 _ ~)11,, i.e. 1 - (1 - ~f/,  = Kt type;  
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(3) ~r: the original assumption; and 
(4) eT/3e2~3, i.e. c~ = (Kt)a: reaction controlled by e.g. three-dimensional 

growth of existing nuclei. 

It is seen that the incorrect f(1 - e) in (1) and (2) still give virtually linear plots, with 
slightly different slopes; interestingly, curve (4) is so misleading as to show two 
"linear" segments with a seemingly significant transition in between. Experimen- 
tally, Guarini etal .  [57] have noted that it is impossible to ascertain from their DSC 
data whether the monomerization of 9-Me-10-AcAD has an apparent reaction 
order of 1, 0.67, or 0.5, in all of which cases E has about the same derived value. 

The suggested approach 

In the foregoing sections, we have discussed the limitations regarding the applica- 
bility of various methods that have been used to analyse dynamic data. In many 
published works we find that often a number of apparently different methods are 
used to analyse the same set of data. However, we think that in many cases this 
procedure is of no real significance, when some of the methods used are mathemat- 
ically equivalent and therefore lead to the same results, or when some are invalid 
in the given situation and thus lead to doubtful values. The limitations of the meth- 
ods express themselves both as discrepancies in the calculated values of the kinetie 
constants, and sometimes as fortuitous agreements when some of the methods are 
certainly inapplicable. (An extreme example of the second situation is that, for 
RDX, the Kissinger value [29] of E is near to that obtained [58] by plotting 

vs T-1, a procedure which has absolutely no theoretical justification.) Accord- 
ingly, we suggest that the interpretation of dynamic data should as far as possible 
be based on results from isothermal experiments. A similar approach has been 
used for studying the dehydroxylation of kaolinite by Achar, Brindley and Sharp 
[631. 

One can unambiguously determine f ( 1 -  ~) over the whole range of c~ and over 
the relevant temperature range, from the independent analysis of individual iso- 
thermal curves. A systematic method of efficiently implementing this identification 
has been proposed by us [3]. It may also be noted that thermoanalytical equipments 
are equally applicable in isothermal experiments (see e.g. [62]) though they are 
more often used in the dynamic mode. The identified form(s) o f f ( l -  ~) can then 
be substituted into either (2) or (4). In this way, form the dynamic ~ or 0. data one 
can then determine accurately the non-average and single-sample values of E and 
Koo: advantages which have been mentioned in the introduction to this paper. 
Moreover, the values will correspond individually to different heating rates. 

We applied this approach to the spinel formation ZnO + Cr203 ~ ZnCr204. 
A DTA curve (experimental atmosphere: N2 at 300 mm mercury) was published 
in Ishii et al. [591, who have also monitored c~(t) by chemical analysis when the 
reaction proceeded isothermally in nitrogen flowing at 50 ml/min, and showed 
that the isothermal data fit [I - (1 -~)1j312 = Kt.  We have measured K from the 
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Table 1 

Isothermal data 

T, K [ In K 
deg. C relative units ] 

800 
900 

1000 

1 ! 0 

4 1.4 
23 3.1 

T~ 
deg. C 

700 
820 
900 

1000 

Table 2 

Dynamic data 

k 
relative units 

0.1 2 
0.15 4 
0.2 7 
0.35 12 

In [ x ( x  - -  1)&] 

--2.6 
- -  1.4 
-- 0.54 
+0.76 

experimental data points at t = 20 rain in the published isothermal plots. F rom 
these values of K, given in Table 1, we calculate a value of 1.5 eV for E. 

In Table 2 the values ~ were measured f rom the published DTA curve whose 
heating rate was unspecified, and the c~ values were read off f rom the (~, T) graph 
which Ishii et al. have drawn presumably by integration. Now, from their analysis 
of  the isothermal data the governing kinetic equation is, in differential form, ~ = 
= K/[(1-~)-2/3 _ (1 _~)-1/3], at least within the ranges 8 0 0 -  1000 ~ and ~ from 
0 to ~- 0.6 corresponding to Kt  = 0 to -~ 0.07. The Arrheuius plot o f ~  (1 _~)-1/3 
[ ( l - c 0  - l j 3 -  1], for the four data points shown in Table 2, is indeed a good 
straight line. From the plot we obtain E = 1.3 eV. In view of the probable experi- 
mental errors and inaccuracics in obtaining data f rcm the published graphs, we con- 
sider satisfactory the reasonable agreement between this value and the one calculat- 
ed from the isothermal data. 

C o n c l u s i o n  

Most of the commonly used methods of analyzing dynamic data have been shown 
to be applicable only under particular conditions. It  has been pointed out that to 
use these methods without considerations of the range of their validity can give 
misleading values of the kinetic parameters. An approach has been advocated in 
which use is made of both the dynamic and isothermal data; the functional form 
f ( 1 -  ~) is determined f rom the isothermal experiments. This form in conjunction 
with the dynamic data, gives the values of the kinetic constants. 

J. Thermal Anal, 18, 1980 
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A p F e n d i x  

We wish to predict how the value of  c~ at peak reaction rate varies with the heat- 
ing rate 49. At  e = 0r : f rom (4) 

~r rn T m 

f do~ K~o fdTexp(-E/kT)-F(~,.,49, rm)=O 
f(1 - ~ )  49 

0 To 

and f rom the fact that  a = 0 
(14) 

E 49 exp(E/kTm) 
f ' ( 1 - ~ m )  - ~ -  72 Koo - -- G(~m, 49, Tin) = 0 .  (15} 

Solving the simultaneous equations d F  = 0 and dG = 0, we find 

OG } 
d49 = aT,,, OT m ~ } / [ .  ~T,,, Ogm O0~m ~T-m " (16) 

Defining dimensionless quantities U = E/kTm, y - 49/K~T~, and I(e,,) - J" 
0 

de/f(1 - c0, we have the following: 

Hence 

c~F 1 OG 
- f " ( 1  - . , , , ) ' ,  

~Um f(1 --am) ' gu m 

T m  

aF K~ i" f(O~m) ~G _ pU 
04, 49z .j d T e x p ( -  U) - 49 , 649 49 e x p ( U ) ,  

To 

0F 1 ~3G pU(2 + U) 
- - -  e x p ( U ) .  (17) 

~Tm y e x p  (U)Tm ' ~T m T m 

dc~ m U h(2 + U)I(e.,) - 1 
(1 s) 

dO 0 hU(2 + U)/f(1-G,,) -f"(1-c~,,)/h 

where h - / t  exp (U). Incidentally, dT, n/d49 can lze derived in a similar way. 
The only case we find rcFcrted in the literature, in which c~ m is apparently inde- 

pendent  o f  49, is the priir~ary rccrystallization of  prc-ccmpressed coFFer [60], where 
e,, - 0.5. In all other cases, experiments give changing 0",~. We have made a rough 
check on (1 8) by taking the case of  the decomposi t ion of  the explosive R D X  [29], 
for which the Rogers  and Morris  method gives E = 2.10 eV and Koo = 1018"4s - 1 .  
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The reaction is complex, but  these representative values are chosen because they 
cor respond to an assumed kinetic equation in which f ( 1 - e )  = 1. We thus have 
very simply I(c~,~) = c~,~ andf"(1  - ~m) = 0. For  ~b = 0.167 K s -  1, e,~ is given as 0.62 
and T,, as 512K; our  calculation shows des -~ - 0 . 1  s K -1, a value which 
compares  well with the experimental indication that  A%,/A(o -- (0.60 - 0.62)/ 
/(0.333 - 0.167) s K -1. 
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ZUSAMMENFASSUNG - -  Die Kinetik heterogener Reakt ionen mit einem Reakt ionspar tner  in der 
Festphase folgt gewShnlich dem Gesetz &-----Koo exp ( - -E /kT) f /1 - -~ ) ,  wobei c~ der Konver-  
sionsgrad des FestkSrpers sowie Koo und E die kinetischen Konstanten  sind. Line kritische 
Untersuchung der verschiedenen, laufend zur Analyse dynamischer Versuchsangaben ange- 
wandten Methoden wird gegeben. Die Grenzen dieser Methoden und ihre Unempfindlichkeit  
gegentiber der Formel f /1--ct)  werden aufgezeigt. Line alternative N~herung, welche frei yon 
diesen Beschr~tnkungen ist, wird gegeben. Bei dieser wird f(1 --c0 aus isothermen Versuchen 
berechnet und nachfolgend die dynamischen Angaben genau analysiert, um die kinetischen 
Konstanten  zu erhalten. Line Fallstudie wird zur Erl/~uterung der Anwendbarkei t  der Nfihe- 
rung gegeben. 

PearoMe - -  KHHeT~a reTeporenn~IX pearnrr~, Br~ro~aiomnx o~nrt pearerrr a TBep~o~ qba3e, 
O6~mHO n o ~ a e T c n  ypaBnenmo ~ ---- Koz exp ( - - E / k T ) f ( 1 - - o  O, r~e ~ - -  cTener~ npeBpameHna 
TBep)~or0 TeaR, a Ko0 ~ E - -  r~ueTa~ecr~e KOHCTaHTbI. [Ipe~cTaB~teHo xprrrrr~ecroe acc~e~oBa- 
HHe paBYlrl~HbIX MeTO~OB, O6/,lqHO r~cnom, ayeMblX ~az a n a ~ 3 a  ~nHaMI~eeKHx 3rcnepHMeHTa~b- 
rmix ~anrrolX. OTMe~errbi orparrrr~erm~ aTHX MeTO~OB H HX aeqyBCTB~TeabnOeT~ B OTnomenrte 
B~ipamenv~ f(1--~) .  1-1pe~aomeuo a~uTepuaTr~noe npa6m~rerme, ro ropoe  cBo6o~no OT 3rn): 
orpaHn~eurpS. B npe~omermoM npn6m4.~enr~ ~taea f ( 1 - - e )  otrpe~e0meTcu H3 rtaoTepM~ec~rtx 
3KcHep/4~IeHTOB, a 3aTeM ~I~tHarcm~ecrme ~anHbIe TOHHO aHasIrt3Hpy~oTe~ ~ t~  noJ/y~ieH~ 3Ha~e- 

IG~eTHtleCK~X KOHCTaHT. I]pe)~cTaBJ/eH npHMep HCC0Ie~OBaHI~ C HeJIbIO pa3~,aenerma npr~- 
MeHHMOCTI~ 3TOFO npa6nn~enrLq. 
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